How to Spot a Bad Ul

How to Spot a Bad Ul

You can trace most things that make a Ul ineffective or unattractive to
one of five causes:

1. A bad Ul app doesn't do the correct task or doesn't do the task
correctly. Remember that the user is task oriented. The first thing the Ul
must do is help the user complete his or her real-world task. Everything
about the Ul must support this principle. This means the programmer
must understand what the user needs to accomplish. It's not always
easy to determine the user's requirements —programmers have
struggled with this for years-but there isn't much point in programming
unless you know what your program needs to do.

2. A bad Ul is too slow or crashes. Performance is a Ul issue. Most
apps have a performance range that is fast enough and making it faster
has little effect. There is also a performance range at which the
application is so slow it is unusable. For apps that fall between these two
extremes, it's more pleasant to use one that features better
performance.

Before you can fix a slow Ul, you must know what is slowing it down. It
can be tough to find the slow parts of your code, but it is by fixing this
code—and often only this code—that you can make performance tuning
pay off. This is especially true if the user runs mainly these portions of
the application. Time spent speeding up any other part of the application
is wasted. Unfortunately, most apps require that you write and
benchmark them before you can determine which parts perform too
slowly.

Of course, nothing is more frustrating performance-wise than an app that
crashes unpredictably, particularly if the user loses data. This means
that good programming practices, error handling, and testing play an
integral role in creating your app's Ul.

3. A bad Ul makes you think about how to accomplish even the
simplest tasks. Flow is an important Ul design concept. It describes the
degree to which a user can focus without interruption on the job at hand.

Flow is so closely connected to a specific task that it's impossible to
provide a recipe for achieving it. However, there are a few things that

http://www.devx.com/upl oad/free/features/getstarted/1999/faQ9/kjfa99/kjside2.htm

Page 1 of 2

8/12/2002



How to Spot a Bad Ul

generally break the user's flow: message boxes, inability to undo
mistakes, excessive movement from keyboard to mouse or eye
movement to and away from screen, anything that requires a cheat
sheet, and lack of predictability. Similarly, a slow application annoys a
user because it breaks the flow of his or her work.

4. A bad Ul is stupid. Computers are stupid, and it is the programmer's
responsibility to make them work in a way that isn't stupid. Stupid
applications don't remember what they need to know or require the user
to confirm operations unnecessarily.

For example, think about how quickly you would fire an assistant if you
asked him or her to do a job for you, only to have the assistant ask you if
you really wanted him or her to complete the task. And later, after the
assistant completes the task, what if he or she were to ask you if you
want him or her to keep this task completed. Yet computers do this all
the time when they ask if you really want them to do something or
whether you want to save certain changes.

The keys to writing a smart application are to give it a memory; let the
user undo operations so you don't need to confirm what the user
requests, and handle the common case without user intervention. The
last key requires making assumptions the user can override. For
example, consider the Save/Save As approach common to Word and
other applications. Word assumes that you mean to save to the same file
you opened unless you specify otherwise with the Save As command.
Word only presents a dialog when the user requests the uncommon
operation of saving to a new filename.

5. A bad Ul is sloppy or ugly. This article shows you some specific
ways to fix or avoid creating a sloppy or ugly interface. VB lets you write
professional-looking applications, regardless of your programming
experience. Most of these ideas take some effort at first, but some
become second nature and require little effort to implement once you
internalize them. Your Uls will continue to improve as you develop good
habits, increase your sensitivity to the user, and learn additional skills.

http://www.devx.com/upl oad/free/features/getstarted/1999/faQ9/kjfa99/kjside2.htm

Page 2 of 2

8/12/2002



