[image: image2.png]OOOOOO

D Visual Studio .net

[image: image3.emf]Cisco Catalyst

2900 XL switch

20

Clients

20

Clients

20

Clients

20

Clients

100 Mbit/s

Cisco Catalyst

2900 XL switch

100 Mbit/s

Cisco Catalyst

2900 XL switch

100 Mbit/s

Cisco Catalyst

2900 XL switch

100 Mbit/s

20

Clients

Cisco Catalyst

2900 XL switch

100 Mbit/s

Cisco Catalyst

3600 XL switch

Compaq

Servernet II

Cisco Catalyst

2900 XL switch

App Server

IIS

ISAPI – C++

Compaq 8500

App Server

IIS

ISAPI – C++

Compaq 8500

App Server

IIS

ISAPI – C++

Compaq 8500

App Server

IIS

ISAPI – C++

Compaq 8500

SQL 2000

Enterprise

Compaq 8500

Nile

Database

Compaq Fibre

Channel Array

RAID 10 (0+1)

Fast Ethernet – 800 Mb/s

Gigabit

Ethernet

Compaq

Servernet II

Gigabit

Ethernet

SOAP in the Microsoft .NET Framework and Visual Studio .NET

Keith Ballinger, Program Manager for ASP .NET Web Services
Jonathan Hawkins, Program Manager for .NET Remoting
Pranish Kumar, Program Manager for ATL Server
Microsoft Corporation

Published: November 2000

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This white paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2001 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows NT, ActiveX, Visual C++, and Visual Studio are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

Other product and company names mentioned herein may be the trademarks of their respective owners.

Microsoft Corporation • One Microsoft Way • Redmond, WA 98052-6399 • USA

Contents

2If you build .ASP applications, ASP .NET Web Services:

2If you build MTS/COM+ applications, .NET Remoting:

2If you build ATL/C++ applications, ATL Server:

3Using SOAP as a Web Developer

4Accessing Web Services

6Using SOAP as a Component Developer

6Example: Managed Code Events over SOAP

6Server Side

11Client Side

13Makefile

15Using SOAP as an ATL Developer

18Consuming Web Services with ATL Server

19Conclusion

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This white paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2001 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows NT, ActiveX, Visual C++, and Visual Studio are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

Other product and company names mentioned herein may be the trademarks of their respective owners.

Microsoft Corporation • One Microsoft Way • Redmond, WA 98052-6399 • USA

Introduction

The Microsoft® .NET Framework and Microsoft® Visual Studio® .NET take advantage of XML and SOAP technologies to allow developers to create solutions with reach. SOAP is a simple and lightweight protocol with wide industry support. It is useful and usable for a wide variety of applications. SOAP and the .NET Frameworks are an easy and natural fit.

SOAP was designed from the ground up to be an extremely simple protocol that can be implemented in a variety of ways for a variety of different needs. Many other companies have produced implementations, including IBM, Develop Mentor, and Userland, as well as Microsoft.

There are several key technologies in the framework that use SOAP. Each of these features solves common problems that developers encounter when creating SOAP-based solutions. These areas are .NET Remoting, ASP .NET Web Services, and ATL Web Services. These features share a number of common technologies and characteristics:

· XML for message generation and consumption.

· SOAP 1.1 compliance, including Section 5 SOAP encoding. This enables strong SOAP interoperability with other SOAP implementations.

· XML-fidelity (non-section 5 SOAP encoding) for a very disconnected model.

· WSDL (a form of XML Schema) for Description.

· Scaling out using a stateless programming model.

· An excellent development environment with Visual Studio .NET.

ASP .NET Web Services and .NET Remoting also share the following:

· XCOPY deployment.

· System .NET, which works very well in both the server and client environment for network communication.

· Common language runtime is leveraged for managed code and thread pool.

· Strong SOAP support for features like SOAP Headers and one-way messages.

· Potential to be used with C#, Visual Basic .NET, or any CLS-compliant language to write applications (Cobol, Python, ComponentPascal, and so forth).

In addition to the common characteristics and technologies listed above, ASP .NET Web Services, .NET Remoting, and ATL Web Services provide a number of distinct capabilities for developers. The following points help developers to start off in the right direction when building an application.

If you build .ASP applications, ASP .NET Web Services:

· Allows strong integration with the ASP .NET HTTP runtime.

· Encourages the developer to focus on exposing the application using XSD data types.

· Provides strong designer support in Visual Studio .NET.

If you build MTS/COM+ applications, .NET Remoting:

· Provides full managed code type-system fidelity over the network.

· Provides the capability to pass objects by reference around the network, and return to a particular object in a particular process.

· Provides binary communication.

If you build ATL/C++ applications, ATL Server:

· Provides a flexible and controllable native (C++) solution.

· Is built on top of the ATL Server ISAPI Web application architecture (leverages thread pool, cache, and so on).

Using SOAP as a Web Developer

ASP .NET Web Services offer a RAD way to easily create and consume Web services. These services are loosely coupled, and offer a high degree of integration with ASP .NET. ASP .NET Web Services are the preferred way for Web developers to expose Web services on the Internet. The goal is quick, easy, and high-performing SOAP services.

ASP .NET Web Services offers deep integration with the ASP .NET HTTP engine. This allows developers who are experienced with Microsoft Web development technologies to build and consume SOAP-based Web services easily.

ASP .NET provides support for Web Services with the .asmx file. An .asmx file is a text file that is similar to an .aspx file. These files can be part of an ASP .NET application that includes .aspx files. These files are then URI-addressable, just as .aspx files are.

The following is a very simple example of an .asmx file:

<%@ WebService Language="C#" Class="HelloWorld" %>

using System;

using System.Web.Services;

public class HelloWorld : WebService {

 [WebMethod] public String SayHelloWorld() {

 return "Hello World";

 }

}

This file starts with an ASP .NET directive Web Service, and sets the language to C# (you could also set the language to Microsoft Visual Basic®, C, or any of about 30 third-party languages). Next, it imports the namespace System.Web.Services. This namespace is needed, and you must include it. Next, the class HelloWorld is declared. This class is derived from the base class WebService. Finally, any methods that will be accessible as part of the service have the custom attribute [WebMethod] (or <"WebMethod()>" in Visual Basic) in front of their signatures.

To make this service available, we might name the file HelloWorld.asmx and place it on a server called Foo inside a virtual directory called Bar. With virtually any HTML 3.2 (or later) browser, you could then enter the URL http://Foo/Bar/HelloWorld.asmx and the resulting page would show the public methods for this Web Service (those marked with the WebMethod attribute), as well which protocols (such as SOAP, or HTTP GET) you can use to invoke these methods. Entering http://Foo/Bar/HelloWorld.asmx?SDL into the Internet Explorer address location produces the same information as an XML file, based on the Service Description Language (WSDL) grammar. This WSDL file is used by clients that access the service and is very important.

Accessing Web Services

Besides technology that allows developers to create Web Services, Microsoft .NET Framework provides a sophisticated set of tools and code to consume—or access as a client—Web Services. Because Web Services are based on open protocols such as the Simple Object Access Protocol (SOAP) and HTTP, this client technology can also be used to consume non-ASP .NET Web Services.

With the SDK, there is a tool called WebServiceUtil.exe (this works automatically in the VS IDE using "Add Web Reference…"). This program can be used to download the WSDL description of a Web Service and create a proxy class that addresses this service. For example, you could enter:

WebServiceUtil /c:proxy /pa:http://someDomain.com/someFolder/HelloWorld.asmx?SDL

A Proxy class called HelloWorld.cs would then be created.

This class would look very similar to the class created in the previous section. It would contain a method called SayHelloWorld that returns a string. Compiling this proxy class into an application, and then calling its method, results in the proxy class packaging a SOAP request across HTTP and receiving the SOAP-encoded response, which is then marshaled as a string.

From the client perspective, the code would be simple:

Dim myHelloWorld As New HelloWorld()

Dim sReturn As String = myHelloWorld.SayHelloWorld()

And the return would be "Hello World."

Using SOAP as a Component Developer

Microsoft .NET Remoting allows developers who need a high degree of control and want to choose between tight coupling or loose coupling to create distributed applications.

It also provides deep integration with the common language runtime and offers developers full type-system fidelity across the wire. This includes constructors, delegates, overloaded methods, passing objects by value and by reference, class hierarchies, interfaces, methods, properties, fields, Marshal by Value (make a copy) and Marshal by Ref (pass an ObjRef) objects between applications (Web Services) over the wire using any of the pluggable channels, distributed identity, activation, lease-based lifetime, and CallContext (flow objects in the SOAP Headers independent of the Parameters).

Using .NET Remoting enables developers to expose Remoting endpoints from any process, including console app, GUI app, NT Service, and IIS. This happens over any transport (with pluggable channels) using any payload encoding (with pluggable serialization formatters with SOAP and Binary formatters provided in the product). SOAP=HTTP+XML is the sweet spot, with full support for SOAP 1.1 over HTTP and SMTP.

There is support for WSDL to describe the Web Service and full runtime type-system fidelity. .NET Remoting provides the soapsuds tool in the .NET SDK that generates service descriptions from metadata for managed classes and COM objects. The soapsuds tool also consumes service descriptions and generates metadata and proxies. A rich interception model is provided, that allows for developers to plug in their own behavior as message flow inbound and outbound from the application. A TCP Channel (using sockets) with a Binary Encoding is provided for those folks who want to get down to the metal.

.NET Remoting remotes managed components, native COM/COM+ Components, and Serviced Components (managed components serviced by COM+ Services). All this happens over SOAP, Binary, and any of the pluggable channels and formats.

Example: Managed Code Events over SOAP

The following code demonstrates how managed code events can be fired between two applications. The client has a local object that it registers for event notification with remote object. When the server object is called, it fires the event. This results in a callback to the client's local object.

Server Side

zap.cs

using System;

namespace Zap

{

 // Define the event arguments

 public class GreetingEventArgs : EventArgs

 {

 public GreetingEventArgs(string greeting)

 {

 this.greeting = greeting;

 }

 public string greeting;

 }

 // Define the event

 public delegate void GreetingEvent(object sender,

GreetingEventArgs e);

 // Define the Service

 public class Waz : MarshalByRefObject

 {

 // The client will subscribe and

 // unsubscribe to this event

 public event GreetingEvent Greeting;

 // Method called remotely by client

 public void HelloMethod(string greeting)

 {

 Console.WriteLine("Received String {0}", greeting);

 // Package String in GreetingEventArgs

 GreetingEventArgs e = new GreetingEventArgs(greeting);

 // Fire Event

 if (Greeting != null)

 {

 Greeting(this, e);

 }

 }

 }

}

host.cs

using System;

using System.IO;

using System.Runtime.Remoting;

using System.Runtime.Remoting.Channels.HTTP;

public class Host

{

 public static void Main(string[] args)

 {

 // Manually load the http channel.

 // This could also be done in the remoting configuration file.

 ChannelServices.RegisterChannel(new HTTPChannel(999));

 // Register the wellknown server type.

 // This could also done in the remoting configuration file.

 RemotingServices.RegisterWellKnownType(

 "Zap", // Assembly

 "Zap.Waz", // Full type name

 "host/Waz.soap", // URI

 WellKnownObjectMode.Singleton); // Object Mode

 // We are done, wait until the user wants to exit

 Console.WriteLine("Host is ready to process remote messages.");

 Console.WriteLine("Press ENTER to exit");

 String keyState = Console.ReadLine();

 }

}

Client Side

client.cs

using System;

using System.Runtime.Remoting;

using System.Runtime.Remoting.Channels.HTTP;

using Zap;

// Local Marshal by Ref Object onto which

// the event will be fired

public class Baz : MarshalByRefObject

{

 public void GreetingHandler(object sender, GreetingEventArgs e)

 {

 Console.WriteLine("GreetingHandler callback : Greeting : {0}\n",

 e.greeting);

 }

}

public class Client

{

 public static void Main(String[] args)

 {

 Baz baz = new Baz();

 // This could also be done with a Remoting configuration file

 // Registe the HTTP Channel

 ChannelServices.RegisterChannel(new HTTPChannel(0));

 // Obtain a Proxy to the SOAP URL

 Waz waz = (Waz)Activator.GetObject(

 typeof(Waz),

 "http://localhost:999/host/Waz.soap"

);

 // Subscribe to event : occurs over SOAP

 waz.Greeting += new GreetingEvent(baz.GreetingHandler);

 for (int i = 0; i < 5; i++)

 {

 // Occurs over SOAP to waz)

 waz.HelloMethod("Bill" + " " + i);

 }

 // Unsubscribe to event : occurs over SOAP

 waz.Greeting -= new GreetingEvent(baz.GreetingHandler);

 }

}

Makefile

makefile

all: Host.exe Zap.dll Client.exe

Host.exe: Host.cs

 csc /r:System.Runtime.Remoting.dll Host.cs

Zap.dll: Zap.cs

 csc /t:library -out:Zap.dll Zap.cs

Client.exe: Zap.dll Client.cs

 csc /r:System.Runtime.Remoting.dll /r:Zap.dll Client.cs

Start host.exe in one window and then start client.exe in another. You will see events being fired back to the client.

This is an example of one the many applications of .NET Remoting, which provides the full CLR managed code type system over the network. .NET Remoting is also an excellent SOAP Server and Client, because it is fully SOAP 1.1 compliant.

Using SOAP as an ATL Developer

ATL Server Web Services offer an easy way for C++ developers to create and consume Web Services in native code. ATL Server is the preferred way for C++ developers to expose and consume Web Services on the Internet. It has been designed to be the fast, lightweight, highly flexible library for Web applications including SOAP services.

ATL Server uses the ATL name because it embodies the ATL goal of high performance and flexibility. For example, you can easily discard the ATL Server HTTP model and write your own dispatcher, while still deriving the benefits of the ATL Server marshaling/protocol code.

ATL Server Web Services use a COM-like syntax for describing interfaces, making it easy to learn for current ATL developers. This COM-like syntax allows the developer to easily expose an object as both a COM object and a Web Service at the same time.

The introduction of attributes greatly simplifies the code, making it much easier for non-ATL developers as well. ATL Server has been designed to interoperate with all the other .NET Web Services, making it easy for a developer to use many technologies in an application.

The Interface. The new interface keyword allows developers to easily create interfaces for COM objects or Web Services.

[

 uuid("D7DAE6FD-AEBB-4579-BD8D-866F74139501"),

 object

]

__interface IWeb_Service_ExampleService

{

 [id(1)] HRESULT HelloWorld([in] BSTR bstrInput, [out, retval] BSTR *bstrOutput);

};

This is how ATL Server allows you to define Web Service interfaces. Through the use of C++ attributes, inline IDL attributes and the new __interface keyword, ATL Server Web Service interfaces look much like the new attributed versions of COM interfaces. Here we have an example of a Web Service interface, IWeb_Service_ExampleService, which implements a single method, HelloWorld. HelloWorld takes a BSTR as input and returns a BSTR as output.

The Request Handler. A request handler is a C++ class, which is exposed via a handler map and has methods which are exposed via a replacement method map. The handler map is simply a mapping between text tags and the name of the class, and the method map is just a mapping between text tags and methods in the class.

 [

 request_handler(name="Default",sdl="GenWeb_Service_ExampleServiceSDL"),

 soap_handler(

 name="Web_Service_ExampleService",

 namespace="urn:Web_Service_ExampleService",

 protocol="soap"

)

]

class CWeb_Service_ExampleService:

 public IWeb_Service_ExampleService

{

public:

 [soap_method]

 HRESULT HelloWorld(BSTR bstrInput, BSTR *bstrOutput)

 {

 CComBSTR bstrOut(L"Hello ");

 bstrOut += bstrInput;

 bstrOut += L"!";

 *bstrOutput = bstrOut.Detach();

 return S_OK;

 }

};

The ATL Server request handler model is very similar for Web applications and Web Services; Figure 1 shows the request-handling model:

[image: image1.png][P Remes

s

ISAPI

App DIl

Figure 1. ATL Server request handler model
The HTTP Request comes into IIS, which maps the request (based on the URL and extension) to an appropriate ISAPI DLL. In turn, the ISAPI DLL maps the handler specified in the request (the handler is specified either in a tag or query parameter) to an appropriate Application DLL. The Application DLL maps this handler to a C++ object. The only difference between a Web application and a Web Service in this model (the ATL Server model) is in this final step. With Web Services the C++ object is capable of decoding/encoding SOAP (the code to do this is inserted by the compiler when it parses the soap_handler attribute).

You can see that our class inherits from our interface and that we use the [soap_method] attribute to indicate that the HelloWorld method will handle SOAP requests. We implement this method just as we would any other C++ method.

The soap_handler attribute also ensures that a valid WSDL describing your service is generated automatically. This description of your service (with the XML/WSDL format) is used by consumers of your Web Service to make sure that they send/receive the correct data in the correct format.

Consuming Web Services with ATL Server

Consuming Web Services with ATL Server is also a relatively simple operation. The developer uses the "Add Web Reference" dialog box (and points it to a .disco file, which in turn points to the WSDL), just as they would to consume any other type of Web reference. Behind the scenes this dialog box runs the sproxy.exe utility on the Web Service's WSDL (there is a different utility for non-native .NET Web Services).

This operation creates the Web Service proxy file, which contains all the C++ code required to utilize the requested Web Service. Using the information in the WSDL, the proxy generator can work out what the Web Service expects to receive and what it will return to the client. This in turn allows the proxy generator to create the header file that can "talk" with the Web Service.

You only need to create an instance of your Web Service class (as found in the generated header file) and use the appropriate method or methods. For example:

CWeb_Service_ExampleServiceService MyService;

CComBSTR bstrOut;

CComBSTR bstrIn(L"World");

MyService.HelloWorld (bstrIn ,&bstrOut,);

wprintf(bstrOut);

And there you have it, a basic ATL Server Web Service and a basic ATL Server Web Service Consumer.

Conclusion

The primary goal of this article is to provide a broad perspective of the SOAP offerings in the .NET Frameworks and Visual Studio .NET. The secondary goal is to provide a roadmap for customers about which path to use when starting to build an application that uses SOAP.

